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Drell-Yan: collinear factorization
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FIG. 1: The leading and next-to-leading order diagrams for the Drell-Yan production. The diagrams c) and d) are enhanced
in the small-x limit due to a strongly rising gluon distribution.

performed the analysis for both the transverse and longitudinal components and find that the twist 4 contributions
have different signs in both cases (for ver low masses), however we do not observe the cancellations of the type found
in the case of the DIS process [17].

II. DRELL-YAN CROSS SECTION

In the lowest approximation, the Drell-Yan lepton pair of mass M is produced form annihilation of two quarks
of the same flavour f from the colliding hadrons: qf qf → γ∗ → l+l−, see Figure 1a. In the collinear factorization
approach, the leading order (LO) Drell-Yan cross section is given by

d2σLO

dM2 dxF
=

4πα2
em

3NcM4

x1x2

x1 + x2

∑

f

e2f
{
qf (x1,M

2) qf (x2,M
2) + qf (x1,M

2) qf (x2,M
2)
}

, (1)

where αem is the fine structure coupling constant, Nc = 3 is the number of quark colors, qf/qf are quark/antiquark
distributions in the colliding hadrons computed at the factorization scale µ2 = M2 and x1,2 are the light-cone momen-
tum fractions of the quarks entering the scattering. In the LO approximation, the energy-momentum conservation at
the photon vertex, (x1p+ x2p)2 = M2, leads to the following relation

x1x2 = M2/s ≡ τ , (2)

where s = (p + p)2 = 2p · p is the center-of-mass energy squared of the colliding hadrons. Introducing the Feynman
variable of the lepton pair, xF = x1 − x2, one can easily find

x1 = 1
2 (
√
x2
F + 4τ + xF ) , x2 = 1

2 (
√
x2
F + 4τ − xF ) . (3)

In the next-to-leading order (NLO) approximation, additional emission of a parton (quark or gluon) into the final
state has to be taken into account. This is shown by the diagrams in Figure 1b -1d. Because of the emission, the quark
entering the photon vertex carries a fraction z < 1 of the original parton momentum. Thus, the energy-momentum
conservation at the photon vertex, e.g. (x1p+ z x2p) = M2, gives now

x1x2 = τ/z , (4)

and the parton momentum fractions take the form

x1 = 1
2 (
√
x2
F + 4(τ/z) + xF ) , x2 = 1

2 (
√
x2
F + 4(τ/z)− xF ) . (5)

From the parton model conditions, x1,2 < 1, we find that z > zmin = τ/(1 − xF ). The NLO correction to the
Drell-Yan cross section, proportional to the strong coupling constant αs, is given in the MS factorization scheme by
[5–7]

d2σNLO

dM2 dxF
=

4πα2
em

3NcM4

αs(M2)

2π

∫ 1

zmin

dz
x1x2

x1 + x2

∑

f

e2f
{
qf (x1,M

2) qf (x2,M
2)Dq(z)

+ g(x1,M
2)
[
qf (x2,M

2) + qf (x2,M
2)
]
Dg(z) + (x1 ↔ x2)

}
, (6)

In the standard collinear factorization approach Drell-Yan process described by the 
fusion of the quark-antiquark and the production of the  massive photon with 

subsequent decay. Higher orders involve gluon corrections.
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FIG. 1: The leading and next-to-leading order diagrams for the Drell-Yan production. The diagrams c) and d) are enhanced
in the small-x limit due to a strongly rising gluon distribution.
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FIG. 1: The leading and next-to-leading order diagrams for the Drell-Yan production. The diagrams c) and d) are enhanced
in the small-x limit due to a strongly rising gluon distribution.
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M : invariant mass of 
the lepton pair

LO :

NLO :
Altarelli, Ellis, Martinelli;

Kubar-Andre, Paige

Matsuura, van der Marck, van Neerven, Hamberg;
Blumlein, Ravindran
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Dipole model for Drell-Yan

Drell-Yan process at high energy in the forward rapidity region

Brodsky, Hebecker, Quack;
Kopeliovich, Raufeisen, Tarasov;
Kopeliovich, Tarasov, Schaefer;

in CGC formalism

Gelis, Jalilian-Marian;

The quark from the projectile interacts with the field of the target, and radiates the 
massive photon (before or after the interaction). Photon decays into the leptons.
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FIG. 3: The enhanced diagrams from Fig. 1 in the proton rest frame.

Both cross sections coincide if the momentum fraction x2 is small. In such a case, to a good approximation, a sea
quark is involved in the scattering since

u(x2) ! u(x2) , d(x2) ! d(x2) . (12)

This is illustrated in Fig. 2 where we show the DY cross section for pp and pp scattering as a function of the center-
of-mass energy of colliding particles E at fixed xF = 0.15 and M = 8 GeV. For M " E, x1 ≈ xF ∼ 1 and
x2 ≈ τ/xF " 1, thus the two cross sections coincide. We use the NLO CTEQ6.6M parton distribution functions [20]
for this comparison.

IV. SMALL x LIMIT

The small x or high energy limit of the DY process means that dilepton mass is much smaller than the center-of-mass
energy of colliding particles, M "

√
s. When x1 ∼ 1 we have

x2 =
M2

s x1
" 1 , (13)

i.e. in the parton model, a fast quark (or antiquark) with the momentum fraction x1 annihilates with a slow antiquark
(or quark) with the momentum fraction x2. In such a case, the diagrams in Figure 1c -1d, with a slow gluon, are
particularly enhanced due to the strongly rising gluon distribution in the small-x limit. Now, a difficult task of small-x
resummation arises [21], which touches the problem of unitarity corrections to the standard, linear QCD evolution
equations.
One can reformulate this problem in the rest frame of one of the protons, which acts as a target. In this frame, the

diagrams in Figure 1c -1d can be interpreted as the lowest order description of the process in which the fast quark
scatters off a soft color field of the target with emission of a massive photon before or after the scattering, see Fig. 3.
The photon subsequently decays into a pair of leptons.
The cross section for radiation of a virtual photon from the fast quark of flavour f , which takes a fraction z of the

radiating quark energy, is given by [12]

σf
T,L(qp → γ∗X) =

∫
d2rW f

T,L(z, r,M
2,mf )σqq(x2, zr) , (14)

where T, L denotes virtual photon polarisation, transverse or longitudinal, respectively. Here r is the photon-quark
transverse separation and W f

T,L are equal to [11, 14]

W f
T =

αem

π2

{
[1 + (1− z)2] η2K2

1(ηr) +m2
f z

4K2
0(ηr)

}
, (15)

W f
L =

2αem

π2
M2(1− z)2K2

0 (ηr) , (16)

where K0,1 are Bessel-McDonald functions, mf is quark mass and η2 = (1− z)M2 + z2m2
f .

The quantity σqq in eq. (14) is a dipole cross section known from DIS scattering at small Bjorken-x [22]. It was
determined from fits to HERA data on the proton structure function F2 at small x under different assumptions, e.g.
assuming phenomenological form with a saturation scale Q2

s(x) = (x/x0)−λ [18, 23]:

σqq(x, r) = σ0

{
1− exp(−r2Q2

s(x)/4)
}
. (17)

Enhanced (in the small x limit) diagrams are with the 
gluons of the target. Incoming quark is mostly valence.

here that the last condition allows us to neglect higher-twist contributions from spectator

partons in the projectile [11].

In the parton model the above process is described as the fusion of a projectile

quark with momentum fraction x ≈ xF and a target antiquark with momentum fraction

xtarget ≈ M2/sxF " 1. (Here and below we neglect the antiquark distribution of the

projectile at the relevant values of xF .)

However, a different physical picture of this process is appropriate in the target rest

frame: A large-x quark of the projectile scatters off the gluonic field of the target and

radiates a massive photon, which subsequently decays into leptons (compare [12]). The

two relevant diagrams, corresponding to the photon being radiated before or after the

interaction with the target, are shown in Fig. 4. Diagrams where the quark interacts with

the target both before and after the photon vertex are suppressed in the high energy

limit [13]. Note that in the above approach no antiquark distribution of the target has

to be introduced. Instead, its effect is produced by the target color field.

k k' k'

8-96 8206A3

q

k

q

Fig.4 Production of a massive photon by a quark scattering off the target field. A quark
with momentum k interacts with an external field producing a photon with momentum
q and an outgoing quark with momentum k′.

In the high energy limit, i.e. q0, k0, k′
0 # M2, the corresponding cross section, includ-

ing the decay of the photon into the lepton pair, reads (e2 = 4παem)

dσ̂

dxF dM2
=

e2

72(2π)3
·

1

xF k0k′
0M2

∫ d2q⊥
(2π)2

d2k′
⊥

(2π)2
|T |2 . (11)

Here T is the amplitude for the production of the virtual photon, given by the sum of

the two diagrams in Fig. 4,

i2πδ(q0+k′
0−k0)Tλ = eūs′(k

′)

[

V (k′, k−q)
i

k/− q/
ε/λ(q) + ε/λ(q)

i

k/′ + q/
V (k′+q, k)

]

us(k) .

(12)

The matrix V is the effective quark scattering vertex introduced in the previous section,

and ε(q) is the polarization vector of the produced photon, accessible via the lepton
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What we mean by ‘small x’?
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in the case of the DIS process [17].

II. DRELL-YAN CROSS SECTION

In the lowest approximation, the Drell-Yan lepton pair of mass M is produced form annihilation of two quarks
of the same flavour f from the colliding hadrons: qf qf → γ∗ → l+l−, see Figure 1a. In the collinear factorization
approach, the leading order (LO) Drell-Yan cross section is given by

d2σLO

dM2 dxF
=

4πα2
em

3NcM4

x1x2

x1 + x2

∑

f

e2f
{
qf (x1,M

2) qf (x2,M
2) + qf (x1,M

2) qf (x2,M
2)
}

, (1)

where αem is the fine structure coupling constant, Nc = 3 is the number of quark colors, qf/qf are quark/antiquark
distributions in the colliding hadrons computed at the factorization scale µ2 = M2 and x1,2 are the light-cone momen-
tum fractions of the quarks entering the scattering. In the LO approximation, the energy-momentum conservation at
the photon vertex, (x1p+ x2p)2 = M2, leads to the following relation

x1x2 = M2/s ≡ τ , (2)

where s = (p + p)2 = 2p · p is the center-of-mass energy squared of the colliding hadrons. Introducing the Feynman
variable of the lepton pair, xF = x1 − x2, one can easily find

x1 = 1
2 (
√
x2
F + 4τ + xF ) , x2 = 1

2 (
√
x2
F + 4τ − xF ) . (3)

In the next-to-leading order (NLO) approximation, additional emission of a parton (quark or gluon) into the final
state has to be taken into account. This is shown by the diagrams in Figure 1b -1d. Because of the emission, the quark
entering the photon vertex carries a fraction z < 1 of the original parton momentum. Thus, the energy-momentum
conservation at the photon vertex, e.g. (x1p+ z x2p) = M2, gives now

x1x2 = τ/z , (4)

and the parton momentum fractions take the form

x1 = 1
2 (
√
x2
F + 4(τ/z) + xF ) , x2 = 1

2 (
√
x2
F + 4(τ/z)− xF ) . (5)

From the parton model conditions, x1,2 < 1, we find that z > zmin = τ/(1 − xF ). The NLO correction to the
Drell-Yan cross section, proportional to the strong coupling constant αs, is given in the MS factorization scheme by
[5–7]
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FIG. 3: The enhanced diagrams from Fig. 1 in the proton rest frame.

Both cross sections coincide if the momentum fraction x2 is small. In such a case, to a good approximation, a sea
quark is involved in the scattering since

u(x2) ! u(x2) , d(x2) ! d(x2) . (12)

This is illustrated in Fig. 2 where we show the DY cross section for pp and pp scattering as a function of the center-
of-mass energy of colliding particles E at fixed xF = 0.15 and M = 8 GeV. For M " E, x1 ≈ xF ∼ 1 and
x2 ≈ τ/xF " 1, thus the two cross sections coincide. We use the NLO CTEQ6.6M parton distribution functions [20]
for this comparison.

IV. SMALL x LIMIT

The small x or high energy limit of the DY process means that dilepton mass is much smaller than the center-of-mass
energy of colliding particles, M "

√
s. When x1 ∼ 1 we have

x2 =
M2

s x1
" 1 , (13)

i.e. in the parton model, a fast quark (or antiquark) with the momentum fraction x1 annihilates with a slow antiquark
(or quark) with the momentum fraction x2. In such a case, the diagrams in Figure 1c -1d, with a slow gluon, are
particularly enhanced due to the strongly rising gluon distribution in the small-x limit. Now, a difficult task of small-x
resummation arises [21], which touches the problem of unitarity corrections to the standard, linear QCD evolution
equations.
One can reformulate this problem in the rest frame of one of the protons, which acts as a target. In this frame, the

diagrams in Figure 1c -1d can be interpreted as the lowest order description of the process in which the fast quark
scatters off a soft color field of the target with emission of a massive photon before or after the scattering, see Fig. 3.
The photon subsequently decays into a pair of leptons.
The cross section for radiation of a virtual photon from the fast quark of flavour f , which takes a fraction z of the

radiating quark energy, is given by [12]

σf
T,L(qp → γ∗X) =

∫
d2rW f

T,L(z, r,M
2,mf )σqq(x2, zr) , (14)

where T, L denotes virtual photon polarisation, transverse or longitudinal, respectively. Here r is the photon-quark
transverse separation and W f

T,L are equal to [11, 14]

W f
T =

αem

π2

{
[1 + (1− z)2] η2K2

1(ηr) +m2
f z

4K2
0(ηr)

}
, (15)

W f
L =

2αem

π2
M2(1− z)2K2

0 (ηr) , (16)

where K0,1 are Bessel-McDonald functions, mf is quark mass and η2 = (1− z)M2 + z2m2
f .

The quantity σqq in eq. (14) is a dipole cross section known from DIS scattering at small Bjorken-x [22]. It was
determined from fits to HERA data on the proton structure function F2 at small x under different assumptions, e.g.
assuming phenomenological form with a saturation scale Q2

s(x) = (x/x0)−λ [18, 23]:

σqq(x, r) = σ0

{
1− exp(−r2Q2

s(x)/4)
}
. (17)

x1 ∼ 1

Expect that on the target side the gluon density is the dominant

x1,2

Light-cone momenta of partons 
in the partonic subprocess

The hierarchy of scales : M2 � s

x1 ∼ xF

in fact:
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transverse separation and W f
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where K0,1 are Bessel-McDonald functions, mf is quark mass and η2 = (1 − z)M2 + z2m2
f .. The quantity σqq in

eq. (10) is a quark-antiquark dipole cross section known from DIS scattering at small Bjorken-x [18]. It was determined
from fits to HERA data on the proton structure function F2 at small x under different assumptions, e.g. assuming
unitarization effects of parton saturation with a saturation scale Qs(x) ∼ x−λ [14, 19]:

σqq(x, r) = σ0

{
1 − exp(−r2Q2

s(x)/4)
}

. (13)

Substituting this dipole cross section into eq. (10) one can test predictions on the DY cross section in which parton
saturation effects are taken into account.

The final form of the DY cross section for the forward dilepton production is found after taking into account the
incoming quark distribution in the proton

d2σDY
T,L

dM2 dxF
=

αem

6πM2

x1

x1 + x2

∑

f

e2
f

∫ 1

x1

dz

z2

[
qf

(x1

z
, M2

)
+ qf

(x1

z
, M2

)]
σf

T,L(qp → γ∗X) . (14)

The expression in the squared brackets under the integral is proportional to the LO contribution of flavour f to the
proton structure function F2 =

∑
f F f

2 where

F f
2 (x, Q2) = e2

f x
[
qf (x, Q2) + qf (x, Q2)

]
. (15)

Thus, the final formula reads

d2σDY
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dM2 dxF
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αem

6πM2
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∑

f

∫ 1

x1

dz

z
F f

2

(x1

z
, M2

)
σf

T,L(qp → γ∗X) . (16)

A similar expression was found in [7] by changing the variables r and z to ρ = zr and α = (1 − z)/z. The new variable
ρ has the interpretation of a size of the qq pair while α is a quark/antiquark longitudinal momentum fraction with
respect to the photon momentum.

IV. PREDICTIONS FOR THE LHC

In Figure 4 we present a comparison of the results from the collinear factorization formula (1) and the dipole
formula (16) against the data from the Fermilab E772 collaboration [20]. We use the LO MSTW parton distributions
[16] for the collinear formula (sold lines) while the parameterisation [21] of the dipole cross section was used in in
the dipole formula. In eq. (16), there are three massless light quarks and charm quark with mass mc = 1.4 GeV.
For the energy

√
s = 38.8 GeV and the indicated values of M and xF , the fraction of slow parton momentum

x2 ≈ 0.01 − 0.1. Thus, it is really slightly beyond the applicability of the dipole formula. We observe that the data

FIG. 3: The enhanced diagrams from Fig. 2 in the proton rest frame.

3

DY cross section in the collinear approach

E (GeV)

M
3  d

!
/d

M
dx

F (
nb

 G
eV

2 )

pp

ppbar

E772 Tevatron LHC
1

10

10 2

10 3

10
2

10
3

10
4

FIG. 1: The DY cross section in the collinear approach for pp and pp collisions as a function of the center-of-mass energy
E =

√

s at fixed xF = 0.15 and M = 7 GeV.

a) b) c) d)

FIG. 2: The leading and next-to-leading order diagrams for the Drell-Yan production. The diagrams c) and d) are enhanced
in the small-x limit due to a strongly rising gluon distribution.

i.e. in the parton model, a fast quark (or antiquark) with the momentum fraction x1 annihilates with a slow antiquark
(or quark) with the momentum fraction x2. In such a case, the diagrams c) and d) in Fig. 2, with a slow gluon, are
particularly enhanced due to the strongly rising gluon distribution in the small-x limit. Now, a difficult task of small-x
resummation arises [17], which touches the problem of unitarity corrections to the standard, linear QCD evolution
equations.

One can reformulate this problem in the rest frame of one of the protons, which acts as a target. In this frame, the
diagrams c) and d) in Fig. 2 can be interpreted as the lowest order description of the process in which the fast quark
scatters off a soft color field of the target with emission of a massive photon before or after the scattering, see Fig. 3.
The photon subsequently decays into a pair of leptons.

The cross section for radiation of a virtual photon from the fast quark of flavour f , which takes a fraction z of the
radiating quark energy, is given by [8]

σf
T,L(qp → γ∗X) =

∫
d2r W f

T,L(z, r, M2, mf )σqq(x2, zr) , (10)

where T, L denotes virtual photon polarisation, transverse or longitudinal, respectively. Here r is the photon-quark
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Both cross sections coincide if the momentum fraction x2 is small. In such a case, to a good approximation, a sea
quark is involved in the scattering since

u(x2) ! u(x2) , d(x2) ! d(x2) . (12)

This is illustrated in Fig. 2 where we show the DY cross section for pp and pp scattering as a function of the center-
of-mass energy of colliding particles E at fixed xF = 0.15 and M = 8 GeV. For M " E, x1 ≈ xF ∼ 1 and
x2 ≈ τ/xF " 1, thus the two cross sections coincide. We use the NLO CTEQ6.6M parton distribution functions [20]
for this comparison.

IV. SMALL x LIMIT

The small x or high energy limit of the DY process means that dilepton mass is much smaller than the center-of-mass
energy of colliding particles, M "

√
s. When x1 ∼ 1 we have

x2 =
M2

s x1
" 1 , (13)

i.e. in the parton model, a fast quark (or antiquark) with the momentum fraction x1 annihilates with a slow antiquark
(or quark) with the momentum fraction x2. In such a case, the diagrams in Figure 1c -1d, with a slow gluon, are
particularly enhanced due to the strongly rising gluon distribution in the small-x limit. Now, a difficult task of small-x
resummation arises [21], which touches the problem of unitarity corrections to the standard, linear QCD evolution
equations.
One can reformulate this problem in the rest frame of one of the protons, which acts as a target. In this frame, the

diagrams in Figure 1c -1d can be interpreted as the lowest order description of the process in which the fast quark
scatters off a soft color field of the target with emission of a massive photon before or after the scattering, see Fig. 3.
The photon subsequently decays into a pair of leptons.
The cross section for radiation of a virtual photon from the fast quark of flavour f , which takes a fraction z of the

radiating quark energy, is given by [12]

σf
T,L(qp → γ∗X) =

∫
d2rW f

T,L(z, r,M
2,mf )σqq(x2, zr) , (14)

where T, L denotes virtual photon polarisation, transverse or longitudinal, respectively. Here r is the photon-quark
transverse separation and W f

T,L are equal to [11, 14]

W f
T =

αem

π2

{
[1 + (1− z)2] η2K2
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f z

4K2
0(ηr)

}
, (15)

W f
L =

2αem
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where K0,1 are Bessel-McDonald functions, mf is quark mass and η2 = (1− z)M2 + z2m2
f .

The quantity σqq in eq. (14) is a dipole cross section known from DIS scattering at small Bjorken-x [22]. It was
determined from fits to HERA data on the proton structure function F2 at small x under different assumptions, e.g.
assuming phenomenological form with a saturation scale Q2

s(x) = (x/x0)−λ [18, 23]:

σqq(x, r) = σ0

{
1− exp(−r2Q2

s(x)/4)
}
. (17)

Radiation of the photon from the fast quark

Structure function of the 
incoming projectile

We will also use other models.
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Recall dipole model for DIS

Dipole model for DIS

Note by the comparison of (2.11), (2.12) with (2.6), (2.7), respectively, that ∆FR gets additional
αs ln Q2/Q2

0 corrections without changing the structure of initial conditions. The corrections ∆F I

are of the order α2
S (αS ln Q2/Q2

0), thus they are not present in the lowest order result which is
proportional to α2

S .

For low Q2-values it is not a priori clear whether these corrections to the twist-4 contributions
are important or not: there is an additional suppression factor Ncαs

π , and for low Q2-values the
logarithm log Q2/Q2

0 does not provides much enhancement. To get a first idea, it may, again, be
useful to draw a connection with diffractive dissociation. As illustrated in Fig. 2(a), these diagrams
describe diffractive production of qq̄g systems. There is no doubt that these diffractive states have
been observed at HERA: a direct analysis of their twist-4 component (e.g. the observation of
diffractive final states with only hard jets) would provide a direct evidence for the presence of these
higher twist corrections in the deep inelastic structure function.

A simple analysis of twist-4 corrections could be based upon the presented low-order expressions.
However, even within this framework we need two initial conditions, φS and φA. Relating them to
the twist-4 diffractive qq̄ cross section (as described in [3]) gives only one condition, and, hence, is
not enough. We are therefore lead to build a model for the initial conditions. The most successful
description of the low-Q2 transition region at HERA has been provided by the saturation model
of [6], and we will use this model to determine the initial conditions.

3 Twist Four in the Saturation Model

Let us first briefly review the model of [6] and its decomposition into twist components. It is well
known that the γ∗p-cross sections,

σT,L(x,Q2) =
4π2αem

Q2
FT,L(x,Q2) , (3.1)

can be written at small x as [8, 9]:

σT,L(x,Q2) =

∫

d2
r

∫ 1

0
dz |ΨT,L(z, r)|2 σ̂(x, r2) (3.2)

where ΨT,L(z, r) denotes the transverse and longitudinally polarized photon wave functions, and
σ̂(x, r2) is the dipole cross section which describes the interaction of the qq̄ pair with the proton.
In addition, z is the momentum fraction of the photon carried by the quark, and r is the relative
transverse separation between the quarks. The wave functions are solely determined by the coupling
of the photon to the qq̄ pair, see e.g. [9]. In [6] the dipole cross section is assumed to depend on x
through the ratio of the transverse separation r and the saturation radius R0(x), and the following
form is proposed:

σ̂(x, r2) = σ0 g

(

r2

4R2
0

)

≡ σ0

{

1 − exp

(

−
r2

4R2
0

)}

. (3.3)

At small r (r # 2R0), the dipole cross section grows quadratically with r, σ̂ ∼ σ0r2/4R2
0, while for

large r (r % 2R0), it saturates, σ̂ = σ0. In order to describe the energy dependence both of the
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Cross section:

Wave function 
of the photon

Dipole cross 
section

In DY: although there is no physical dipole, the slow gluon ‘sees’ one as 
the interference of diagrams with emissions of the photon.
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Predictions for LHC
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FIG. 5: Left: the DY cross section from the collinear (solid lines) and dipole (dashed lines) approaches as a function of energy
E =

√

s for fixed xF = 0.15 and dilepton mass M = 6, 8, 10 GeV (from top to bottom). Right: the same for M = 10 GeV and
the indicated parameterizations of the parton distributions and dipole cross section.

In Figure 5 (left) we present predictions for the DY cross section as a function of the center-of-mass energy E =
√
s

at fixed xF = 0.15 and dilepton mass M = 6, 8, 10 GeV. For the collinear factorisation results we use the CTEQ6.6M
parton distributions. In the figure on the right, we show the same results for M = 10 GeV in a more detailed way,
using the linear scales. We additionally show the collinear factorization results for the MSTW08 parton distributions
and the dipole approach results with two parameterizations of the dipole cross section: GBW [18] and GS [25]. In
the latter parameterization the DGLAP evolution of the dipole cross section for small dipole sizes is built in. We
also analysed the Color Glass Condensate parametrization [27], finding results very close to the GBW curves. At
the LHC energy, the fraction x2 ≈ 3 · 10−6 and we are really in the small-x domain which has not been explored
experimentally yet at the hard scale given by the invariant mass of the DY lepton pair. Thus, the presented results are
only extrapolations. Nevertheless, we clearly see that saturation effects encoded in the dipole approach give results
which are systematically below the collinear factorization predictions. At the LHC energy, in the most extreme case,
the suppression of the DY cross section due to saturation effects can be as large as a factor of three.
We are looking forward to the experimental verification of this result.

VI. TWIST EXPANSION OF THE DIPOLE FORMULA

We will analyze the dipole DY cross section (19) from the point of view of the twist expansion in positive powers
of the ratio Q2

s(x2)/M2, where Qs is the x-dependent saturation scale. We utilize the Mellin transform, using the
methods elaborated in [17, 19]. The twist analysis for the Drell-Yan production is slightly more complicated than in
the case of the structure functions. This is due to the fact that the integral in z cannot be performed analytically.
This is because it involves the structure function F2(x1/z) which is given as a parametrization to the experimental
data. In order to compute the twist expansion we will present two methods. In the first one we will expand the
integrand around the z = 1 point and perform the integrals analytically. This will give us approximate, analytical
expressions for higher twists. In the second method we leave the integrals in z and devise a method to extract the
twist contributions numerically. This method gives exact results for the twist expansion.
The standard definition of the Mellin transform of a function f(r2) reads

φ(γ) =

∫ ∞

0

dr2

r2
(r2)−γf(r2) , (20)

M = 6, 8, 10 GeVDilepton mass
dipole-GS (Golec-Sapeta)

DGLAP includedLarge differences between collinear approaches

Dipole predictions systematically lower than the collinear calculations.

typical values probed at energies 14-7 TeVx2 � 3 · 10−6 − 10−5

y ∼ 5− 6 range of rapidities

LHC7

LHC7
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Twist expansion

What do we mean by ‘twist expansion’ ?

Classify different contributions by ∼
�

1
M2

�p

Due to the presence of the nonlinear terms in the dipole 
cross section we classify these corrections by ∼

�
Q2

s(x)
M2

�p

Methods developed and applied to DIS 
structure functions:

Bartels, Golec-Biernat, Peters;
Bartels, Golec-Biernat, Motyka.
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Twist expansion for Drell-Yan

First recall the method in DIS:

Note by the comparison of (2.11), (2.12) with (2.6), (2.7), respectively, that ∆FR gets additional
αs ln Q2/Q2

0 corrections without changing the structure of initial conditions. The corrections ∆F I

are of the order α2
S (αS ln Q2/Q2

0), thus they are not present in the lowest order result which is
proportional to α2

S .

For low Q2-values it is not a priori clear whether these corrections to the twist-4 contributions
are important or not: there is an additional suppression factor Ncαs

π , and for low Q2-values the
logarithm log Q2/Q2

0 does not provides much enhancement. To get a first idea, it may, again, be
useful to draw a connection with diffractive dissociation. As illustrated in Fig. 2(a), these diagrams
describe diffractive production of qq̄g systems. There is no doubt that these diffractive states have
been observed at HERA: a direct analysis of their twist-4 component (e.g. the observation of
diffractive final states with only hard jets) would provide a direct evidence for the presence of these
higher twist corrections in the deep inelastic structure function.

A simple analysis of twist-4 corrections could be based upon the presented low-order expressions.
However, even within this framework we need two initial conditions, φS and φA. Relating them to
the twist-4 diffractive qq̄ cross section (as described in [3]) gives only one condition, and, hence, is
not enough. We are therefore lead to build a model for the initial conditions. The most successful
description of the low-Q2 transition region at HERA has been provided by the saturation model
of [6], and we will use this model to determine the initial conditions.

3 Twist Four in the Saturation Model

Let us first briefly review the model of [6] and its decomposition into twist components. It is well
known that the γ∗p-cross sections,

σT,L(x,Q2) =
4π2αem

Q2
FT,L(x,Q2) , (3.1)

can be written at small x as [8, 9]:

σT,L(x,Q2) =

∫

d2
r

∫ 1

0
dz |ΨT,L(z, r)|2 σ̂(x, r2) (3.2)

where ΨT,L(z, r) denotes the transverse and longitudinally polarized photon wave functions, and
σ̂(x, r2) is the dipole cross section which describes the interaction of the qq̄ pair with the proton.
In addition, z is the momentum fraction of the photon carried by the quark, and r is the relative
transverse separation between the quarks. The wave functions are solely determined by the coupling
of the photon to the qq̄ pair, see e.g. [9]. In [6] the dipole cross section is assumed to depend on x
through the ratio of the transverse separation r and the saturation radius R0(x), and the following
form is proposed:

σ̂(x, r2) = σ0 g

(

r2

4R2
0

)

≡ σ0

{

1 − exp

(

−
r2

4R2
0

)}

. (3.3)

At small r (r # 2R0), the dipole cross section grows quadratically with r, σ̂ ∼ σ0r2/4R2
0, while for

large r (r % 2R0), it saturates, σ̂ = σ0. In order to describe the energy dependence both of the
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while the inverse transform is given by

f(r2) =

∫ c+i∞

c−i∞

dγ

2πi
(r2)γφ(γ) , (21)

where c is a real number which has to be taken in interval (a, b) such that the integral (20) is absolutely convergent
for a < Re γ < b.
We start the twist analysis from the transverse part of the cross section, and we assume that quarks are massless.

The part of the DY cross section which corresponds to the transverse polarization of the photon (19) reads explicitly

d2σDY
T

dM2 dxF
=

α2
em

6π2M2

1

x1 + x2

∫ 1

x1

dz

z
F2

(x1

z
,M2

) ∫ ∞

0
dr2 [1 + (1− z)2]M2(1− z)K2

1(Mr
√
1− z)σqq̄(x2, zr) . (22)

Using the above definitions of the Mellin transform, the dipole cross section can be written as

σqq̄(x, r) =

∫ c+i∞

c−i∞

dγ

2πi
(r2)γ

∫ ∞

0

dr′2

r′2
(r′2)−γ σqq̄(x, r

′) . (23)

We will perform the twist analysis using the GBW parametrization of the dipole cross section (17) which is given in
a closed analytic form. The advantage of this is that we can perform the integral over the dipole sizes analytically.
The Mellin transform of the GBW cross section reads

σ0 G(γ) ≡ σ0

∫ ∞

0

dr̂2

r̂2
(r̂2)−γ(1 − e−r̂2) = −σ0 Γ(−γ) , (24)

and therefore has single poles for all non-negative integer values of γ.
Using representation (23) together with the explicit Mellin transform of the GBW cross section (24), we can rewrite

the above expression as

d2σDY
T

dM2 dxF
=

α2
em

6π2M2

1

x1 + x2

∫ 1

x1

dz

z
F2

(x1

z
,M2

)∫ ∞

0
dr2 [1 + (1− z)2]M2(1− z)K2

1(Mr
√
1− z)

× σ0

∫ c+i∞

c−i∞

dγ

2πi
(r2)γ

(
z2Q2

s(x2)

4

)γ

G(γ) , (25)

where the contour of integration over γ is chosen so that the constant c satisfies 0 < Re c < 1 and Im c = 0. We can
now perform the integration over the dipole size r. To this aim we define

H̃T (γ) ≡
∫ ∞

0
dr̃2K2

1(r̃)(r̃
2)γ =

√
πΓ(γ)Γ(1 + γ)Γ(2 + γ)

2Γ(32 + γ)
. (26)

The transverse part of the DY cross section reads therefore

d2σDY
T

dM2 dxF
=

α2
emσ0

6π2M2

1

x1 + x2

∫ c+i∞

c−i∞

dγ

2πi
G(γ)H̃T (γ)

(
Q2

s(x2)

4M2

)γ

×
∫ 1

x1

dz

z
F2

(x1

z
,M2

)
[1 + (1 − z)2]

(
z2

1− z

)γ

. (27)

Clearly the poles in the γ plane control the behavior in M2. We need to evaluate the integral over the longitudinal
momentum fraction z. Let us introduce the following notation

IT,γ(x1, z,M
2) =

1

z
F2

(x1

z
,M2

)
[1 + (1− z)2](z2)γ . (28)

We first perform the integral over z analytically by expanding the above expression around z = 1. We assume that
F2

(
x1/z,M2

)
does not have any singularities at z = 1, which is corroborated by the expressions for the structure

functions at these values of x1 ∼ 1.
Expanding the integrand and integrating term by term one obtains,

∫ 1

x1

dz
∑

k≥0

I(k)T,γ(x1, z = 1,M2)(1 − z)k
(

1

1− z

)γ

=
∑

k≥0

I(k)T,γ(x1, z = 1,M2)(1− x1)
1−γ+k 1

1− γ + k
. (29)

Take Mellin transform:

σT,L(x,Q
2) = σ0

� 1/2+i∞

1/2−i∞

dγ

2πi

�
Q

2
s(x)
Q2

�γ

HT,L

�
γ,

m
2
f

Q2

�
G(γ) .
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while the inverse transform is given by

f(r2) =

∫ c+i∞

c−i∞

dγ

2πi
(r2)γφ(γ) , (21)

where c is a real number which has to be taken in interval (a, b) such that the integral (20) is absolutely convergent
for a < Re γ < b.
We start the twist analysis from the transverse part of the cross section, and we assume that quarks are massless.

The part of the DY cross section which corresponds to the transverse polarization of the photon (19) reads explicitly

d2σDY
T

dM2 dxF
=

α2
em

6π2M2

1

x1 + x2

∫ 1

x1

dz

z
F2

(x1

z
,M2

) ∫ ∞

0
dr2 [1 + (1− z)2]M2(1− z)K2

1(Mr
√
1− z)σqq̄(x2, zr) . (22)

Using the above definitions of the Mellin transform, the dipole cross section can be written as

σqq̄(x, r) =

∫ c+i∞

c−i∞

dγ

2πi
(r2)γ

∫ ∞

0

dr′2

r′2
(r′2)−γ σqq̄(x, r

′) . (23)

We will perform the twist analysis using the GBW parametrization of the dipole cross section (17) which is given in
a closed analytic form. The advantage of this is that we can perform the integral over the dipole sizes analytically.
The Mellin transform of the GBW cross section reads

σ0 G(γ) ≡ σ0

∫ ∞

0

dr̂2

r̂2
(r̂2)−γ(1 − e−r̂2) = −σ0 Γ(−γ) , (24)

and therefore has single poles for all non-negative integer values of γ.
Using representation (23) together with the explicit Mellin transform of the GBW cross section (24), we can rewrite

the above expression as

d2σDY
T

dM2 dxF
=

α2
em

6π2M2

1

x1 + x2

∫ 1

x1

dz

z
F2

(x1

z
,M2

)∫ ∞

0
dr2 [1 + (1− z)2]M2(1− z)K2

1(Mr
√
1− z)

× σ0

∫ c+i∞

c−i∞

dγ

2πi
(r2)γ

(
z2Q2

s(x2)

4

)γ

G(γ) , (25)

where the contour of integration over γ is chosen so that the constant c satisfies 0 < Re c < 1 and Im c = 0. We can
now perform the integration over the dipole size r. To this aim we define

H̃T (γ) ≡
∫ ∞

0
dr̃2K2

1(r̃)(r̃
2)γ =

√
πΓ(γ)Γ(1 + γ)Γ(2 + γ)

2Γ(32 + γ)
. (26)

The transverse part of the DY cross section reads therefore

d2σDY
T

dM2 dxF
=

α2
emσ0

6π2M2

1

x1 + x2

∫ c+i∞

c−i∞

dγ

2πi
G(γ)H̃T (γ)

(
Q2

s(x2)

4M2

)γ

×
∫ 1

x1

dz

z
F2

(x1

z
,M2

)
[1 + (1 − z)2]

(
z2

1− z

)γ

. (27)

Clearly the poles in the γ plane control the behavior in M2. We need to evaluate the integral over the longitudinal
momentum fraction z. Let us introduce the following notation

IT,γ(x1, z,M
2) =

1

z
F2

(x1

z
,M2

)
[1 + (1− z)2](z2)γ . (28)

We first perform the integral over z analytically by expanding the above expression around z = 1. We assume that
F2

(
x1/z,M2

)
does not have any singularities at z = 1, which is corroborated by the expressions for the structure

functions at these values of x1 ∼ 1.
Expanding the integrand and integrating term by term one obtains,

∫ 1

x1

dz
∑

k≥0

I(k)T,γ(x1, z = 1,M2)(1 − z)k
(

1

1− z

)γ

=
∑

k≥0

I(k)T,γ(x1, z = 1,M2)(1− x1)
1−γ+k 1

1− γ + k
. (29)

Poles in            control behavior in      γ 1/Q2

Photon wave function dipole cross section
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Twist expansion for Drell-Yan

It is more complicated than in DIS, because of the convolution with the 
structure function of the forward projectile.

7

while the inverse transform is given by

f(r2) =

∫ c+i∞

c−i∞

dγ

2πi
(r2)γφ(γ) , (21)

where c is a real number which has to be taken in interval (a, b) such that the integral (20) is absolutely convergent
for a < Re γ < b.
We start the twist analysis from the transverse part of the cross section, and we assume that quarks are massless.

The part of the DY cross section which corresponds to the transverse polarization of the photon (19) reads explicitly

d2σDY
T

dM2 dxF
=

α2
em

6π2M2

1

x1 + x2

∫ 1

x1

dz

z
F2

(x1

z
,M2

) ∫ ∞

0
dr2 [1 + (1− z)2]M2(1− z)K2

1(Mr
√
1− z)σqq̄(x2, zr) . (22)

Using the above definitions of the Mellin transform, the dipole cross section can be written as

σqq̄(x, r) =

∫ c+i∞

c−i∞

dγ

2πi
(r2)γ

∫ ∞

0

dr′2

r′2
(r′2)−γ σqq̄(x, r

′) . (23)

We will perform the twist analysis using the GBW parametrization of the dipole cross section (17) which is given in
a closed analytic form. The advantage of this is that we can perform the integral over the dipole sizes analytically.
The Mellin transform of the GBW cross section reads

σ0 G(γ) ≡ σ0

∫ ∞

0

dr̂2

r̂2
(r̂2)−γ(1 − e−r̂2) = −σ0 Γ(−γ) , (24)

and therefore has single poles for all non-negative integer values of γ.
Using representation (23) together with the explicit Mellin transform of the GBW cross section (24), we can rewrite

the above expression as

d2σDY
T

dM2 dxF
=

α2
em

6π2M2

1

x1 + x2

∫ 1

x1

dz

z
F2

(x1

z
,M2

)∫ ∞

0
dr2 [1 + (1− z)2]M2(1− z)K2

1(Mr
√
1− z)

× σ0

∫ c+i∞

c−i∞

dγ

2πi
(r2)γ

(
z2Q2

s(x2)

4

)γ

G(γ) , (25)

where the contour of integration over γ is chosen so that the constant c satisfies 0 < Re c < 1 and Im c = 0. We can
now perform the integration over the dipole size r. To this aim we define

H̃T (γ) ≡
∫ ∞

0
dr̃2K2

1(r̃)(r̃
2)γ =

√
πΓ(γ)Γ(1 + γ)Γ(2 + γ)

2Γ(32 + γ)
. (26)

The transverse part of the DY cross section reads therefore

d2σDY
T

dM2 dxF
=

α2
emσ0

6π2M2

1

x1 + x2

∫ c+i∞

c−i∞

dγ

2πi
G(γ)H̃T (γ)

(
Q2

s(x2)

4M2

)γ

×
∫ 1

x1

dz

z
F2

(x1

z
,M2

)
[1 + (1 − z)2]

(
z2

1− z

)γ

. (27)

Clearly the poles in the γ plane control the behavior in M2. We need to evaluate the integral over the longitudinal
momentum fraction z. Let us introduce the following notation

IT,γ(x1, z,M
2) =

1

z
F2

(x1

z
,M2

)
[1 + (1− z)2](z2)γ . (28)

We first perform the integral over z analytically by expanding the above expression around z = 1. We assume that
F2

(
x1/z,M2

)
does not have any singularities at z = 1, which is corroborated by the expressions for the structure

functions at these values of x1 ∼ 1.
Expanding the integrand and integrating term by term one obtains,

∫ 1

x1

dz
∑

k≥0

I(k)T,γ(x1, z = 1,M2)(1 − z)k
(

1

1− z

)γ

=
∑

k≥0

I(k)T,γ(x1, z = 1,M2)(1− x1)
1−γ+k 1

1− γ + k
. (29)

Cannot directly perform integral over   z (fraction of the light-
cone momentum of the initial quark carried away by the photon), 

since it is weighted by the structure function of the projectile.

Two methods: fully analytical in terms of expansion in (1-x1). 
Semi-analytical with exact results for twist contributions
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Twist expansion: series

7

while the inverse transform is given by

f(r2) =

∫ c+i∞

c−i∞

dγ

2πi
(r2)γφ(γ) , (21)

where c is a real number which has to be taken in interval (a, b) such that the integral (20) is absolutely convergent
for a < Re γ < b.
We start the twist analysis from the transverse part of the cross section, and we assume that quarks are massless.

The part of the DY cross section which corresponds to the transverse polarization of the photon (19) reads explicitly

d2σDY
T

dM2 dxF
=

α2
em

6π2M2

1

x1 + x2

∫ 1

x1

dz

z
F2

(x1

z
,M2

) ∫ ∞

0
dr2 [1 + (1− z)2]M2(1− z)K2

1(Mr
√
1− z)σqq̄(x2, zr) . (22)

Using the above definitions of the Mellin transform, the dipole cross section can be written as

σqq̄(x, r) =

∫ c+i∞

c−i∞

dγ

2πi
(r2)γ

∫ ∞

0

dr′2

r′2
(r′2)−γ σqq̄(x, r

′) . (23)

We will perform the twist analysis using the GBW parametrization of the dipole cross section (17) which is given in
a closed analytic form. The advantage of this is that we can perform the integral over the dipole sizes analytically.
The Mellin transform of the GBW cross section reads

σ0 G(γ) ≡ σ0

∫ ∞

0

dr̂2

r̂2
(r̂2)−γ(1 − e−r̂2) = −σ0 Γ(−γ) , (24)

and therefore has single poles for all non-negative integer values of γ.
Using representation (23) together with the explicit Mellin transform of the GBW cross section (24), we can rewrite

the above expression as

d2σDY
T

dM2 dxF
=

α2
em

6π2M2

1

x1 + x2

∫ 1

x1

dz

z
F2

(x1

z
,M2

)∫ ∞

0
dr2 [1 + (1− z)2]M2(1− z)K2

1(Mr
√
1− z)

× σ0

∫ c+i∞

c−i∞

dγ

2πi
(r2)γ

(
z2Q2

s(x2)

4

)γ

G(γ) , (25)

where the contour of integration over γ is chosen so that the constant c satisfies 0 < Re c < 1 and Im c = 0. We can
now perform the integration over the dipole size r. To this aim we define

H̃T (γ) ≡
∫ ∞

0
dr̃2K2

1(r̃)(r̃
2)γ =

√
πΓ(γ)Γ(1 + γ)Γ(2 + γ)

2Γ(32 + γ)
. (26)

The transverse part of the DY cross section reads therefore

d2σDY
T

dM2 dxF
=

α2
emσ0

6π2M2

1

x1 + x2

∫ c+i∞

c−i∞

dγ

2πi
G(γ)H̃T (γ)

(
Q2

s(x2)

4M2

)γ

×
∫ 1

x1

dz

z
F2

(x1

z
,M2

)
[1 + (1 − z)2]

(
z2

1− z

)γ

. (27)

Clearly the poles in the γ plane control the behavior in M2. We need to evaluate the integral over the longitudinal
momentum fraction z. Let us introduce the following notation

IT,γ(x1, z,M
2) =

1

z
F2

(x1

z
,M2

)
[1 + (1− z)2](z2)γ . (28)

We first perform the integral over z analytically by expanding the above expression around z = 1. We assume that
F2

(
x1/z,M2

)
does not have any singularities at z = 1, which is corroborated by the expressions for the structure

functions at these values of x1 ∼ 1.
Expanding the integrand and integrating term by term one obtains,

∫ 1

x1

dz
∑

k≥0

I(k)T,γ(x1, z = 1,M2)(1 − z)k
(

1

1− z

)γ

=
∑

k≥0

I(k)T,γ(x1, z = 1,M2)(1− x1)
1−γ+k 1

1− γ + k
. (29)
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while the inverse transform is given by

f(r2) =

∫ c+i∞

c−i∞

dγ

2πi
(r2)γφ(γ) , (21)

where c is a real number which has to be taken in interval (a, b) such that the integral (20) is absolutely convergent
for a < Re γ < b.
We start the twist analysis from the transverse part of the cross section, and we assume that quarks are massless.

The part of the DY cross section which corresponds to the transverse polarization of the photon (19) reads explicitly

d2σDY
T

dM2 dxF
=

α2
em

6π2M2

1

x1 + x2

∫ 1

x1

dz

z
F2

(x1

z
,M2

) ∫ ∞

0
dr2 [1 + (1− z)2]M2(1− z)K2

1(Mr
√
1− z)σqq̄(x2, zr) . (22)

Using the above definitions of the Mellin transform, the dipole cross section can be written as

σqq̄(x, r) =

∫ c+i∞

c−i∞

dγ

2πi
(r2)γ

∫ ∞

0

dr′2

r′2
(r′2)−γ σqq̄(x, r

′) . (23)

We will perform the twist analysis using the GBW parametrization of the dipole cross section (17) which is given in
a closed analytic form. The advantage of this is that we can perform the integral over the dipole sizes analytically.
The Mellin transform of the GBW cross section reads

σ0 G(γ) ≡ σ0

∫ ∞

0

dr̂2

r̂2
(r̂2)−γ(1 − e−r̂2) = −σ0 Γ(−γ) , (24)

and therefore has single poles for all non-negative integer values of γ.
Using representation (23) together with the explicit Mellin transform of the GBW cross section (24), we can rewrite

the above expression as

d2σDY
T

dM2 dxF
=

α2
em

6π2M2

1

x1 + x2

∫ 1

x1

dz

z
F2

(x1

z
,M2

)∫ ∞

0
dr2 [1 + (1− z)2]M2(1− z)K2

1(Mr
√
1− z)

× σ0

∫ c+i∞

c−i∞

dγ

2πi
(r2)γ

(
z2Q2

s(x2)

4

)γ

G(γ) , (25)

where the contour of integration over γ is chosen so that the constant c satisfies 0 < Re c < 1 and Im c = 0. We can
now perform the integration over the dipole size r. To this aim we define

H̃T (γ) ≡
∫ ∞

0
dr̃2K2

1(r̃)(r̃
2)γ =

√
πΓ(γ)Γ(1 + γ)Γ(2 + γ)

2Γ(32 + γ)
. (26)

The transverse part of the DY cross section reads therefore

d2σDY
T

dM2 dxF
=

α2
emσ0

6π2M2

1

x1 + x2

∫ c+i∞

c−i∞

dγ

2πi
G(γ)H̃T (γ)

(
Q2

s(x2)

4M2

)γ

×
∫ 1

x1

dz

z
F2

(x1

z
,M2

)
[1 + (1 − z)2]

(
z2

1− z

)γ

. (27)

Clearly the poles in the γ plane control the behavior in M2. We need to evaluate the integral over the longitudinal
momentum fraction z. Let us introduce the following notation

IT,γ(x1, z,M
2) =

1

z
F2

(x1

z
,M2

)
[1 + (1− z)2](z2)γ . (28)

We first perform the integral over z analytically by expanding the above expression around z = 1. We assume that
F2

(
x1/z,M2

)
does not have any singularities at z = 1, which is corroborated by the expressions for the structure

functions at these values of x1 ∼ 1.
Expanding the integrand and integrating term by term one obtains,

∫ 1

x1

dz
∑

k≥0

I(k)T,γ(x1, z = 1,M2)(1 − z)k
(

1

1− z

)γ

=
∑

k≥0

I(k)T,γ(x1, z = 1,M2)(1− x1)
1−γ+k 1

1− γ + k
. (29)
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Inserting this expansion into eq. (27) one obtains a general expression which allows to extract the twists systematically
in powers of (1− x1)

d2σDY
T

dM2 dxF
=

α2
emσ0

6π2M2

1

x1 + x2

∑

k≥0

∫ c+i∞

c−i∞

dγ

2πi
G(γ)H̃T (γ)

I(k)T,γ(x1, z = 1,M2)

1− γ + k
(1− x1)

1+k

(
Q2

s(x2)

4M2(1− x1)

)γ

. (30)

The twist expansion then corresponds to taking residues of the different poles in γ that appear on the right-hand
side of (30). One can also rewrite it to expose a more general structure of this expansion

d2σDY
T

dM2 dxF
=

∑

γc≥1

∑

k≥1−γc

(1 − x1)
k

(
Q2

s(x2)

4M2

)γc

Ck,γc
(x1, lnQ

2
s/(M

2(1− x1)), lnM
2) , (31)

where the first sum is performed over the poles in eq. (30). The coefficients Ck,γc
depend on lnQ2

s/(M
2(1−x1)) which

reflects the fact that there can be multiple poles, and the lnM2 dependence comes from the possible dependence of
F2 on M2. Since F2 is evaluated at large values of x1 we expect this dependence to be very mild.

A. Twist 2

To extract the twist 2 in powers of Q2
s(x2)/M2 we will consider the leading term in the expansion of the function

IT around z = 1. Taking this term, the integral over z reads

∫ 1

x1

dz I(0)T,γ(x1, z = 1,M2)

(
1

1− z

)γ

=

∫ 1

x1

dzF2

(
x1,M

2
)( 1

1− z

)γ

= F2

(
x1,M

2
)
(1− x1)

1−γ 1

1− γ
. (32)

Therefore integral over z gives the single pole in the γ plane. The function G(γ) = −Γ(−γ) also has a single pole,
which together gives the double pole in γ = 1. The higher order terms in expansion of (28) will contribute to terms
which are suppressed by powers of (1− x1) as is evident from eq. (31). We will discuss these later.
Taking the first term in the expansion in 1− z, (32) we obtain the approximate formula

d2σDY
T

dM2 dxF
"

α2
emσ0

6π2M2

F2

(
x1,M2

)

x1 + x2
(1− x1)

∫ c+i∞

c−i∞

dγ

2πi
G(γ)H̃T (γ)

1

1− γ

(
Q2

s(x2)

4M2(1− x1)

)γ

. (33)

The leading twist extraction amounts to taking the above formula and closing the contour to the right and taking the
contribution from the pole at γ = 1. The approximate expression for the leading twist is therefore

∆(0)
T,2 =

α2
emσ0

6π2M2

F2

(
x1,M2

)

x1 + x2
× 2

Q2
s(x2)

4M2

[
4

3
γE − 1 +

2

3
ψ(

5

2
)−

2

3
ln

Q2
s(x2)

4M2(1− x1)

]
+O(1 − x1) . (34)

Note that there is an additional dependence on the mass M2 in the function F2(x1,M2). As x1 " 1 this dependence
should be very mild and should not affect too much the twist expansion we are performing . We stress that this
expression is an approximate one in the sense that there are subleading contributions coming from the other terms in
expression (28). They will not modify however the logarithmic term as they are regular as γ = 1. More specifically
the first subleading contribution to the leading twist comes from

∫ 1

x1

dz I(1)T,γ(x1, z = 1,M2)

(
1

1− z

)γ

=

∫ 1

x1

dz(F2

(
x1,M

2
)
(1 − 2γ) + x1F

′
2(x1,M

2))

(
1

1− z

)γ−1

= [F2

(
x1,M

2
)
(1 − 2γ) + x1F

′
2(x1,M

2)](1− x1)
2−γ 1

2− γ
. (35)

This contribution is the leading one for the twist 4, but it also will affect the twist 2 as it multiplies the single pole
in γ = 1 present in G(γ). It gives the following correction to the leading expression for twist 2, eq. (34):

∆(1)
T,2 = −

α2
emσ0

6π2M2

[F2

(
x1,M2

)
− x1F ′

2

(
x1,M2

)
]

x1 + x2
(1 − x1)

Q2
s(x2)

4M2
×

4

3
, (36)

Expand it around z=1

Systematic expansion. Turns out very slowly 
convergent, because x1 is large but not large enough x1 ∼ 0.1− 0.2

Define the function:

In practice different method used to obtain exact results.

Expansion for the cross section:

12



Twist expansion: explicit

Twist 2: contribution from γ = 1

9

Twist-2 DY cross sections  for xF = 0.15
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FIG. 6: The twist-2 contributions, shown by the dashed lines, for the transverse and longitudinal DY cross section at the LHC
energy

√

s = 14 TeV. The solid lines show the all-twist results while the dotted lines correspond to the approximate twist-2
results given by eqs. (34) and (A6).

which is suppressed by one power of (1− x1).
The above-presented method allows to systematically compute the contributions to the given twist in powers of

(1−x1). The effectiveness of this calculation depends however on the rate of the convergence of the series in (1−x1).
In our kinematics x1 is about 0.1 − 0.2, hence this convergence is rather slow. Below we will present another semi-
analytical method which allows to compute the leading twist expression exactly.
As the double pole contribution has been evaluated already in (34), the remaining single pole contribution comes

from the pole in G(γ) multiplying the non-singular in γ = 1 part of the integral over z. It suffices to take the
regularized integral

∫ 1

x1

dz
IT,γ=1(x1, z,M2)− I(0)T,γ=1(x1, z = 1,M2)

1− z
=

∫ 1

x1

dz
zF2(

x1

z ,M2)(1 + (1 − z)2)− F2(x1,M2)

1− z
, (37)

which is evaluated at γ = 1. The integrand in this expression is regular at z = 1 and thus the integral can be evaluated
purely numerically. The correction to eq. (34) is therefore

∆(k>0)
T,2 =

α2
emσ0

6π2M2

1

x1 + x2
×

4

3

(
Q2

s(x2)

4M2

)∫ 1

x1

dz
zF2(

x1

z
,M2)(1 + (1− z)2)− F2(x1,M2)

1− z
, (38)

and the complete, exact leading twist expression equals

d2σDY (τ=2)
T

dM2 dxF
= ∆(0)

T,2 +∆(k>0)
T,2 . (39)

A similar twist-2 analysis of the longitudinal part of the DY cross section is given in Appendix A.
In Fig. 6 we show the comparison of the calculation of the all-twist formulae, eq. (27) for the transverse and

eq. (A2) for the longitudinal parts (shown by the solid lines), with the approximate leading twist contribution. The

approximate twist-2 contributions ∆(0)
T,2 and ∆(0)

L,2, eqs. (34) and (A6) respectively, are shown by the dotted lines while
the exact twist-2 expressions, eq. (39) and eq. (A7), are depicted by the dashed lines. We see that the approximate
twist-2 formulae are significantly above the exact result even for lager valaues of M . This is due to the large value
of the subleading terms in the expansion of (1 − x1). Since x1 # xF = 0.15 the higher order terms can be still
contributing. On the other hand, we observe that the exact twist-2 formulae are getting close to the all-twist result
in the region M > 6.
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FIG. 6: The twist-2 contributions, shown by the dashed lines, for the transverse and longitudinal DY cross section at the LHC
energy

√

s = 14 TeV. The solid lines show the all-twist results while the dotted lines correspond to the approximate twist-2
results given by eqs. (34) and (A6).

which is suppressed by one power of (1− x1).
The above-presented method allows to systematically compute the contributions to the given twist in powers of

(1−x1). The effectiveness of this calculation depends however on the rate of the convergence of the series in (1−x1).
In our kinematics x1 is about 0.1 − 0.2, hence this convergence is rather slow. Below we will present another semi-
analytical method which allows to compute the leading twist expression exactly.
As the double pole contribution has been evaluated already in (34), the remaining single pole contribution comes

from the pole in G(γ) multiplying the non-singular in γ = 1 part of the integral over z. It suffices to take the
regularized integral

∫ 1

x1

dz
IT,γ=1(x1, z,M2)− I(0)T,γ=1(x1, z = 1,M2)

1− z
=

∫ 1

x1

dz
zF2(

x1

z ,M2)(1 + (1 − z)2)− F2(x1,M2)

1− z
, (37)

which is evaluated at γ = 1. The integrand in this expression is regular at z = 1 and thus the integral can be evaluated
purely numerically. The correction to eq. (34) is therefore

∆(k>0)
T,2 =

α2
emσ0

6π2M2

1

x1 + x2
×

4

3

(
Q2

s(x2)

4M2

)∫ 1

x1

dz
zF2(

x1

z
,M2)(1 + (1− z)2)− F2(x1,M2)

1− z
, (38)

and the complete, exact leading twist expression equals

d2σDY (τ=2)
T

dM2 dxF
= ∆(0)

T,2 +∆(k>0)
T,2 . (39)

A similar twist-2 analysis of the longitudinal part of the DY cross section is given in Appendix A.
In Fig. 6 we show the comparison of the calculation of the all-twist formulae, eq. (27) for the transverse and

eq. (A2) for the longitudinal parts (shown by the solid lines), with the approximate leading twist contribution. The

approximate twist-2 contributions ∆(0)
T,2 and ∆(0)

L,2, eqs. (34) and (A6) respectively, are shown by the dotted lines while
the exact twist-2 expressions, eq. (39) and eq. (A7), are depicted by the dashed lines. We see that the approximate
twist-2 formulae are significantly above the exact result even for lager valaues of M . This is due to the large value
of the subleading terms in the expansion of (1 − x1). Since x1 # xF = 0.15 the higher order terms can be still
contributing. On the other hand, we observe that the exact twist-2 formulae are getting close to the all-twist result
in the region M > 6.
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Inserting this expansion into eq. (27) one obtains a general expression which allows to extract the twists systematically
in powers of (1− x1)

d2σDY
T

dM2 dxF
=

α2
emσ0

6π2M2

1

x1 + x2

∑

k≥0

∫ c+i∞

c−i∞

dγ

2πi
G(γ)H̃T (γ)

I(k)T,γ(x1, z = 1,M2)

1− γ + k
(1− x1)

1+k

(
Q2

s(x2)

4M2(1− x1)

)γ

. (30)

The twist expansion then corresponds to taking residues of the different poles in γ that appear on the right-hand
side of (30). One can also rewrite it to expose a more general structure of this expansion

d2σDY
T

dM2 dxF
=

∑

γc≥1

∑

k≥1−γc

(1 − x1)
k

(
Q2

s(x2)

4M2

)γc

Ck,γc
(x1, lnQ

2
s/(M

2(1− x1)), lnM
2) , (31)

where the first sum is performed over the poles in eq. (30). The coefficients Ck,γc
depend on lnQ2

s/(M
2(1−x1)) which

reflects the fact that there can be multiple poles, and the lnM2 dependence comes from the possible dependence of
F2 on M2. Since F2 is evaluated at large values of x1 we expect this dependence to be very mild.

A. Twist 2

To extract the twist 2 in powers of Q2
s(x2)/M2 we will consider the leading term in the expansion of the function

IT around z = 1. Taking this term, the integral over z reads

∫ 1

x1

dz I(0)T,γ(x1, z = 1,M2)

(
1

1− z

)γ

=

∫ 1

x1

dzF2

(
x1,M

2
)( 1

1− z

)γ

= F2

(
x1,M

2
)
(1− x1)

1−γ 1

1− γ
. (32)

Therefore integral over z gives the single pole in the γ plane. The function G(γ) = −Γ(−γ) also has a single pole,
which together gives the double pole in γ = 1. The higher order terms in expansion of (28) will contribute to terms
which are suppressed by powers of (1− x1) as is evident from eq. (31). We will discuss these later.
Taking the first term in the expansion in 1− z, (32) we obtain the approximate formula

d2σDY
T

dM2 dxF
"

α2
emσ0

6π2M2

F2

(
x1,M2

)

x1 + x2
(1− x1)

∫ c+i∞

c−i∞

dγ

2πi
G(γ)H̃T (γ)

1

1− γ

(
Q2

s(x2)

4M2(1− x1)

)γ

. (33)

The leading twist extraction amounts to taking the above formula and closing the contour to the right and taking the
contribution from the pole at γ = 1. The approximate expression for the leading twist is therefore

∆(0)
T,2 =

α2
emσ0

6π2M2

F2

(
x1,M2

)

x1 + x2
× 2

Q2
s(x2)

4M2

[
4

3
γE − 1 +

2

3
ψ(

5

2
)−

2

3
ln

Q2
s(x2)

4M2(1− x1)

]
+O(1 − x1) . (34)

Note that there is an additional dependence on the mass M2 in the function F2(x1,M2). As x1 " 1 this dependence
should be very mild and should not affect too much the twist expansion we are performing . We stress that this
expression is an approximate one in the sense that there are subleading contributions coming from the other terms in
expression (28). They will not modify however the logarithmic term as they are regular as γ = 1. More specifically
the first subleading contribution to the leading twist comes from

∫ 1

x1

dz I(1)T,γ(x1, z = 1,M2)

(
1

1− z

)γ

=

∫ 1

x1

dz(F2

(
x1,M

2
)
(1 − 2γ) + x1F

′
2(x1,M

2))

(
1

1− z

)γ−1

= [F2

(
x1,M

2
)
(1 − 2γ) + x1F

′
2(x1,M

2)](1− x1)
2−γ 1

2− γ
. (35)

This contribution is the leading one for the twist 4, but it also will affect the twist 2 as it multiplies the single pole
in γ = 1 present in G(γ). It gives the following correction to the leading expression for twist 2, eq. (34):

∆(1)
T,2 = −

α2
emσ0

6π2M2

[F2

(
x1,M2

)
− x1F ′

2

(
x1,M2

)
]

x1 + x2
(1 − x1)

Q2
s(x2)

4M2
×

4

3
, (36)

First term contains the contribution from the double pole in the Mellin space 
(hence the logarithm). The result is exact twist 2 contribution.

Note the integrals over z over the structure function of the projectile.
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Twist expansion: twist 4

Twist 4: contribution from γ = 2

Closed expressions found, though more cumbersome

11

where we evaluated the residue coming from the single pole at γ = 2. The final expression for twist 4 for the transverse
part is therefore

d2σDY (τ=4)
T

dM2 dxF
= ∆(1)

T,4 +∆(2)
T,4 . (43)

In Fig. 7 (left) we show convergence of the twist expansion for the transverse and longitudinal DY cross sections
(left plot) and their sum (right plot). The solid lines show the all-twist results while the dashed and dotted lines
correspond to the twist-2 and twist-(2+4) contributions, respectively. We see that there is a poor convergence below
M < 6 GeV. Both twist contributions are below the exact results for the transverse part of the cross section while
for the longitudinal part they are above the exact result. This is the reason why the sum of the transverse and
longitudinal parts of the twist contributions approaches the exact total cross section. This effect is shown in Fig. 7
(right).

Summary

In this paper we have investigated Drell-Yan production at forward rapidities and at high energies accessible at the
LHC. We have used the dipole formulation suitable for forward rapidities and used the cross section which incorporates
saturation effects. The comparison with the standard collinear formula shows the suppression of the production cross
section for highest energies when using the dipole models with saturation effects.
Using the dipole formulation with the GBW formula for the dipole model cross section, we have constructed the

twist expansion for this process. Unlike the DIS case, where the twist expansion for the GBW model could be
performed completely analytically, here we had to resort to the semi-analytical evaluation of the individual terms
in the expansion. It was shown that the leading twist is a good approximation to the full result for masses of the
Drell-Yan pair larger than about ∼ 6 GeV. For lower masses the twist expansion quickly becomes divergent and full
resummation is necessary.
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Appendix A: Twist decomposition of the longitudinal part

The leading twist-2 contribution for the longitudinal part of the cross section can be computed in a similar manner
as for the transverse part. We use

H̃L(γ) ≡
∫ ∞

0
dr̃2K2

0 (r̃)(r̃
2)γ =

√
π Γ(1 + γ)3

2Γ(32 + γ)
. (A1)

After performing the integrals over the transverse coordinate and using the Mellin representation we obtain

d2σDY
L

dM2 dxF
=

α2
emσ0

6π2M2

2

x1 + x2

∫ c+i∞

c−i∞

dγ

2πi
G(γ)H̃L(γ)

(
Q2

s(x2)

4M2

)γ ∫ 1

x1

dz

z
F2

(x1

z
,M2

)
(1− z)

(
z2

1− z

)γ

. (A2)

Similarly to the transverse case, we can introduce the function

IL(x1, z,M
2) =

1

z
F2

(x1

z
,M2

)
(z2)γ . (A3)

The leading term coming from the expansion around z = 1 will thus give

∫ 1

x1

dz I(0)L (x1, z = 1,M2)

(
1

1− z

)γ−1

=

∫ 1

x1

dzF2

(
x1,M

2
)( 1

1− z

)γ−1

= F2

(
x1,M

2
)
(1 − x1)

2−γ 1

2− γ
. (A4)
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FIG. 7: Convergence of the twist expansion of the transverse and longitudinal DY cross sections (left) and of their sum
(right). The solid lines show the all-twist results while the dashed and dotted lines correspond to the twist-2 and twist-(2+4)
contributions, respectively.

B. Twist 4

In this section we provide semi-analytical expressions for the twist 4 both for the longitudinal and transverse
polarizations of the DY photon. We start with the transverse part and use eqs. (27) and (35) together, which will
give part of the twist 4 contribution. Taking the residue at γ = 2 we obtain
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The second part contributing to twist four comes from the contribution of the single pole in G(γ) multiplying the
finite part in the integral over z. This can be evaluated in the similar manner as before by modifying the integral in
order to perform analytical continuation to γ = 2. To this aim we subtract in the integrand the first two terms of the
expansion in (1 − z)

δF(x1,M
2) =
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which gives convergent integral by definition. Then we need to add the term coming from the lowest order term in
expansion in z = 1 evaluated at γ = 2 which is
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.

The expression contributing to twist 4 is thus
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, (42)
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The same can be computed for longitudinal component.
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Again regularized integral
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Twist expansion: longitudinal part
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Note that this expression is not singular at leading pole γ = 1. Again the leading twist extraction in the longitudinal
case therefore amounts to taking the formula
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and closing the contour to the right, enclosing the pole at γ = 1. The final result is
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There are no logarithmic corrections because of the single leading pole coming only from the function G(γ).
Using analogous method as before we can also evaluate the exact expression for the longitudinal part of the cross

section. The integral over z in (A2) is well defined for γ = 1 and so to evaluate the exact twist 2 we can perform this
integral directly numerically. The exact expression for the twist 2 contribution to the longitudinal part of the cross
section reads
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Analogously we evaluate the twist-4 contribution to the longitudinal part. The first part of this contribution is
obtained by taking the residue at γ = 2 of expression (A5)
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The second part comes again from the finite part of integral in z which is
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The total contribution to the twist 4 for the longitudinal case is therefore
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There are no logarithmic corrections because of the single leading pole coming only from the function G(γ).
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Note that this expression is not singular at leading pole γ = 1. Again the leading twist extraction in the longitudinal
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There are no logarithmic corrections because of the single leading pole coming only from the function G(γ).
Using analogous method as before we can also evaluate the exact expression for the longitudinal part of the cross

section. The integral over z in (A2) is well defined for γ = 1 and so to evaluate the exact twist 2 we can perform this
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There are no logarithmic corrections because of the single leading pole coming only from the function G(γ).
Using analogous method as before we can also evaluate the exact expression for the longitudinal part of the cross

section. The integral over z in (A2) is well defined for γ = 1 and so to evaluate the exact twist 2 we can perform this
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s(x2)

4M2(1 − x1)

)
+ ψ

(
7

2

)]
. (A8)

The second part comes again from the finite part of integral in z which is

∫ 1

x1

dz
IL,γ=2(x1, z,M2)− I(0)L,γ=2(x1, z = 1,M2)

1− z
=

∫ 1

x1

dz
z3F2(

x1

z
,M2)− F2(x1,M2)

1− z
. (A9)

We thus obtain

∆(2)
L,4 =

α2
emσ0

6π2M2

2

x1 + x2

(
Q2

s(x2)

4M2

)2

×
(
−

16

15

)∫ 1

x1

dz
z3F2(

x1

z ,M2)− F2(x1,M2)

1− z
. (A10)

The total contribution to the twist 4 for the longitudinal case is therefore

d2σDY (τ=4)
L

dM2 dxF
= ∆(1)

L,4 +∆(2)
L,4 . (A11)
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Twist expansion for DY: results
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FIG. 7: Convergence of the twist expansion of the transverse and longitudinal DY cross sections (left) and of their sum
(right). The solid lines show the all-twist results while the dashed and dotted lines correspond to the twist-2 and twist-(2+4)
contributions, respectively.

B. Twist 4

In this section we provide semi-analytical expressions for the twist 4 both for the longitudinal and transverse
polarizations of the DY photon. We start with the transverse part and use eqs. (27) and (35) together, which will
give part of the twist 4 contribution. Taking the residue at γ = 2 we obtain

∆(1)
T,4 =

α2
emσ0

6π2M2

1

x1 + x2

(
Q2

s(x2)

4M2

)2

×
4

15

[
F2(x1,M

2)

(
−63 + 36 γE + 18ψ(7/2)− 18 log

(
Q2

s(x2)

4M2(1− x1)

))

+ x1F
′
2(x1,M

2)

(
17− 12 γE − 6ψ(7/2) + 6 log

(
Q2

s(x2)

4M2(1 − x1)

))]
. (40)

The second part contributing to twist four comes from the contribution of the single pole in G(γ) multiplying the
finite part in the integral over z. This can be evaluated in the similar manner as before by modifying the integral in
order to perform analytical continuation to γ = 2. To this aim we subtract in the integrand the first two terms of the
expansion in (1 − z)

δF(x1,M
2) =

∫ 1

x1

dz
z3F2(

x1

z ,M2)(1 + (1− z)2)− F2(x1,M2)− (1− z)[−3F2(x1,M2) + x1F ′
2(x1,M2)]

(1− z)2
, (41)

which gives convergent integral by definition. Then we need to add the term coming from the lowest order term in
expansion in z = 1 evaluated at γ = 2 which is

−
F2(x1,M2)

1− x1
.

The expression contributing to twist 4 is thus

∆(2)
T,4 =

α2
emσ0

6π2M2

1

x1 + x2

(
Q2

s(x2)

4M2

)2

× (−
8

5
)

[
δF(x1,M

2)−
F2(x1,M2)

1− x1

]
, (42)

• Twist expansion divergent for M<4.
• For higher masses M>6 twist 2 sufficient.
• For longitudinal twist 2 overestimates, for transverse part 

underestimates the exact result. 
• The sum is better approximated by twist expansion.

√
s = 14 TeV
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Conclusions

✤ Suppression of the dipole model results with respect to the collinear 
approximation.

✤ However, large discrepancies between different models  in the highest 
energy range.

✤ Twist expansion for the case of GBW formula can be constructed.

✤ More involved procedure for DY than in DIS. Semi-analytical results 
possible.

✤ Twist expansion divergent for invariant masses < 4-6 GeV.
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